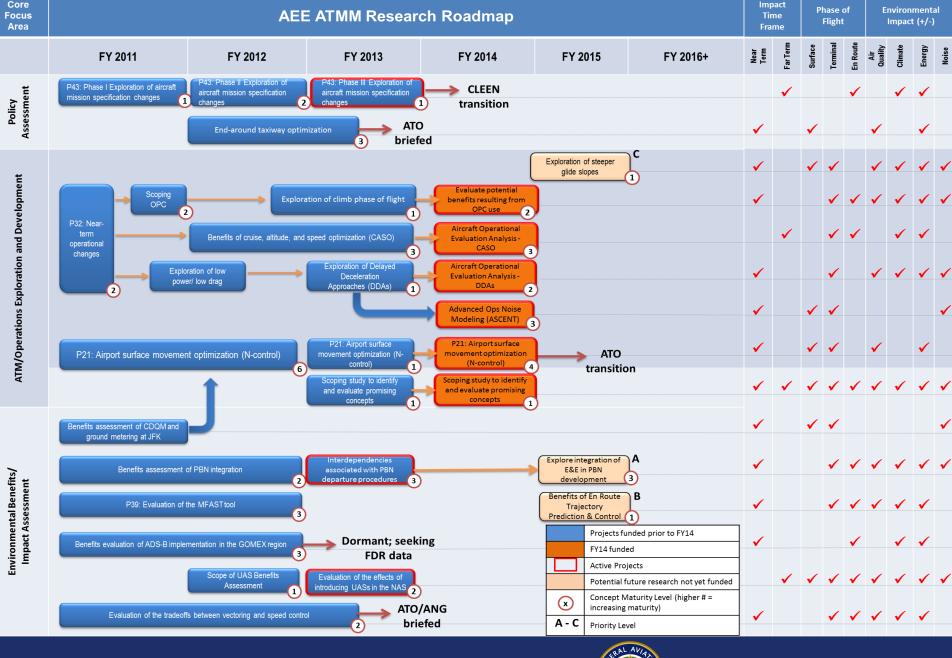
Office of Environment and Energy's (AEE) Air Traffic Management Modernization / Operations Research Program Update

Presented to: REDAC E&E Subcommittee

By: Julie Marks and Chris Dorbian (AEE-400)

Date: August 26, 2014

Air Traffic Management Modernizations (ATMM) Offer Important Potential E&E Improvements


AEE E&E ATMM Research Program Goals

- 1. Identify and accelerate the implementation of air traffic management concepts that will reduce aviation environmental impacts and/or improve energy efficiency
- 2. Investigate the E&E effects of operational changes implemented by the FAA.

Core Program Elements

- Research Process: Identifies, conducts, evaluates and transitions ATMM research for implementation
- Roadmap: Describes areas for ATMM Research near, medium, and long term.
- Portfolio Metrics: Assesses the portfolio's balance with regard to addressing E&E issues and the maturity progression of research project.

Drivers of Research

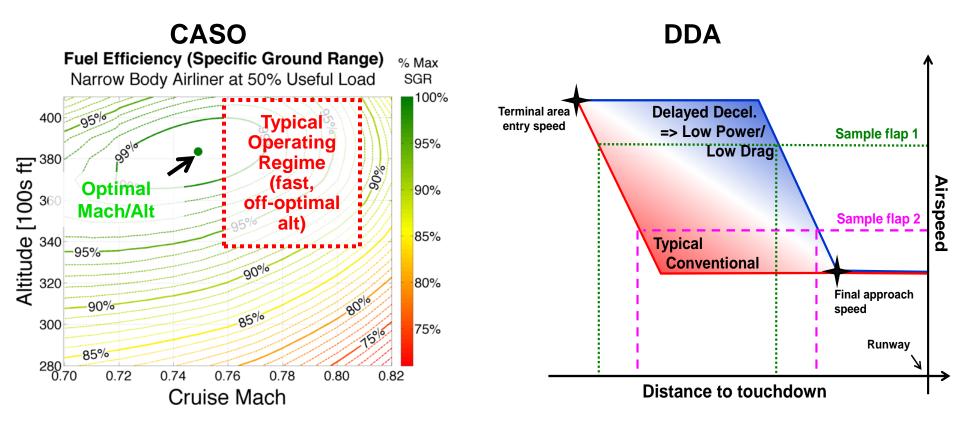
1) Support AEE Vision and E&E goals

2) External pressures:

- ANG-2 (NextGen Chief Scientist) direction:
 - Will be difficult to fund concepts that don't have a near-term path to implementation
 - New operational concepts need to be either beneficial or neutral in terms of noise
- General prominence of noise issues
- Inconsistent/unpredictable funding, e.g., anticipated FY15 F&E funding cut expected to significantly reduce ops research budget

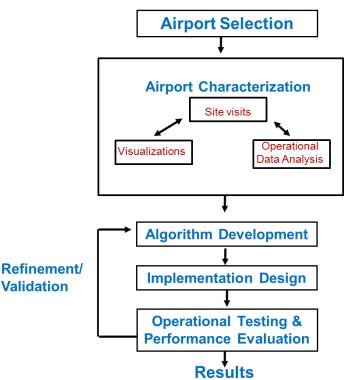
How are we aligning AEE Ops Research Program to conform to these pressures?

- 1) Maturing promising near-term operational mitigations with the goal of transitioning to appropriate implementing organization (e.g., ATO, ANG)
- 2) Noise focus
 - Noise-beneficial concepts
 - Enhancing noise analysis/modeling of operational concepts
- 3) Developing improved environmental analysis capability
 - Tools and processes
 - UAS
- 4) Continuing and enhancing collaboration (within FAA and with external stakeholders)
- 5) Annual Roadmap assessment


Maturing Promising Concepts

- Advance concept maturity to demonstrate environmental/operational benefits and identify potential implementation strategy
- Work collaboratively with implementing organization (e.g., ATO, ANG) with the goal of integration into NAS
- Concepts adequately funded in FY14 to minimize dependency on FY15 funding

Project	FY14 Funding
Cruise Alt. and Speed Optimization (CASO) / Delayed Deceleration Approach (DDA)	\$1M
N-Control	\$170K
Optimized Profile Climb (OPC)	\$150K


Maturing Promising Concepts

- Benefits fairly well-understood; critical path now is stakeholder collaboration and understanding operational barriers, implementation strategy
- Opportunities with Delta, OSU/NetJets
- Integration into NextGen concepts, e.g., RNAV speed targets

Maturing Promising Concepts

N-Control OPC

- Focused on LGA demo and Surface Office coordination
- Complementary to NextGen Integration Working Group recommendation

- Refining benefits estimates
- Identifying barriers and targeted opportunities

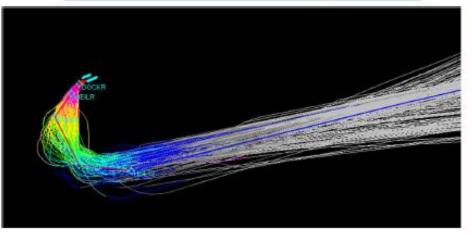
Noise Focus

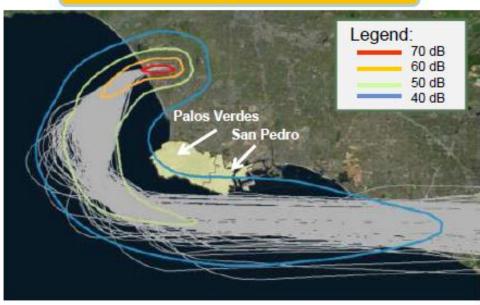
Noise-beneficial concepts:

Project	Noise Impact	Research Approach
DDA	Potential benefit from staying in "clean" configuration	Exploring noise measurement
OPC	Potential benefit from steeper profile	Exploring alternative metrics/modeling
Steeper glide slope	Potential benefit from steeper approach profile	Possible NAS-wide analysis (not currently funded)

Enhanced analysis/modeling capabilities

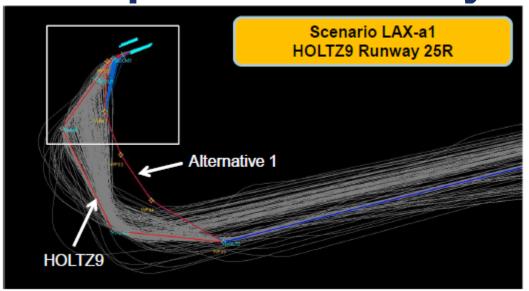
 ASCENT project focused on quantifying noise impacts of advanced operational procedures

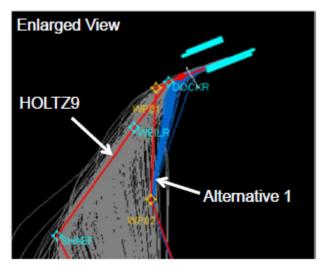

Improved Environmental Analysis Capability


- Goal is to perform operations analysis that informs decision-making
- PBN Procedures Analysis objectives:
 - Evaluate E&E impact of PBN procedures
 - Develop generalized approach using AEDT to assess PBN procedures
 - Assess noise and emissions trade-offs associated with Noise Abatement Departure Procedures (NADPs) and explore operationally viable alternatives
- In addition to E&E assessments, analysis has resulted in development of tools/processes for advanced operations analyses with AEDT

Example NADP Analysis – LAX

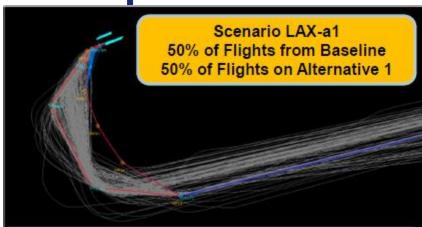
Baseline HOLTZ9 Runway 25R

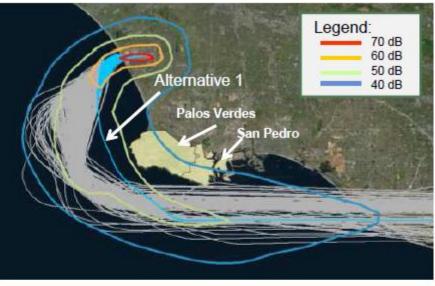




Baseline Preliminary Emissions and Noise Exposure Results

Event	# of Flights	Fuel (kg)	Distance (km)	Duration (min : sec)	CO (kg)	NO _x (kg)	PM _{2.5} (kg)				
HE-MEN'S	riigiits	1	(Kill)	(mm . sec)				40 dB	50 dB	60 dB	70 dB
Baseline*	693**	2,035	255	23:02	2.3	42	1.9	806	185	21	3


Example NADP Analysis – LAX


- The scenarios were created to determine the environmental impact of different utilization rates of the Alternatives
- Scenario LAX-a1 Creation:
 - 350 (50%) of the tracks from the baseline sample were used
 - 350 (50%) of the tracks from the baseline sample were 'tagged' onto Alternative 1
 - In TARGETS, control line was drawn across tracks to 'tag' to a procedure
 - Scenario LAX-a1 assumes the same percentages of Day/Evening/Night flights as the Baseline
 - Baseline Day: 231 (38% of total flights) Alternative 1 Day: 231 (38% of total flights)
 - Baseline Evening: 36 (5% of total flights) Alternative 1 Evening: 36 (5% of total flights)
 - Baseline Night: 83 (12% of total flights) Alternative 1 Night: 83 (12% of total flights)
 - Scenario LAX-a1 Total: Day 462 (66%), Evening 72 (10%), Night 166 (24%)

Example NADP Analysis – LAX

Key Take-Aways:

- Scenario LAX-a1 results in reductions in fuel, distance, duration, and emissions when compared to the baseline
- The CNEL 60 dB contour areas increased in size, the 50 dB contour area decreased, and 70 dB contour area remained the same.

Scenario LAX-a1 Preliminary CNEL Noise Contours

Scenario LAX-a1 Preliminary Emissions and Noise Exposure Results

Event	# of Flights	Fuel (kg)	Distance (km)	Duration (min : sec)	CO (kg)	NO _x (kg)	PM _{2.5} (kg)	CENL Contour Area km)		ea (sq.
	ruguts			(min : sec)				50 dB	60 dB	70 dB
Baseline*	693	2,035	255	23:02	2.3	42	1.9	185	21	3
Scenario LAX-a1** Δ	642	-53 (-2.6%)	-4.7 (-1.9%)	-0:35 (-2.5%)	-0.13 (-5.8%)	-1.43 (-3.4%)	-0.04 (-2.3%)	-38 (-20%)	+7 (+33%)	No change

Preliminary results; do not cite or quote

Improved Environmental Analysis Capability

Modeling Potential E&E Benefits/Impacts of UAS in the NAS

- On-going coordination with:
 - FAA UAS Integration Office
 - Volpe
 - TRB/ACRP

- NASA
- DoD
- Preliminary Findings on UAS Customization and Substitution in AEDT

Level of Difficulty	Description of Customization	Data Needs	Data Availability	Updates to AEDT
0	Model UAS conversions as actual AEDT aircraft (e.g. G550 Conversion as a GV in AEDT)	\	✓	X
1	Model UAS with a substitute aircraft currently in AEDT	V	V	X
2	Select an airframe, engine alternative in AEDT	V	\	X
3	Select an airframe engine alternative with different BADA fuel specifications			
4	Select an airframe engine alternative with a different NPD curve			
5	Obtain new performance data for UAS vehicles and integrate into AEDT (Fuel Burn)	×	×	✓
6	Obtain new performance data for UAS vehicles and integrate into AEDT (Noise)	X	X	\

Preliminary results; do not cite or quote

Summary

- AEE Ops Research program is positioned to respond to external pressures now and in the future:
 - 1) Maturing promising mitigations
 - CASO, DDA, N-Control, OPC
 - 2) Addressing noise impacts
 - Noise-mitigating concepts
 - Enhanced noise modeling/analysis of operational concepts
 - 3) Improved environmental analysis capability
 - Procedure assessment
 - UAS
 - 4) Collaboration
 - 5) Annual Roadmap assessment